

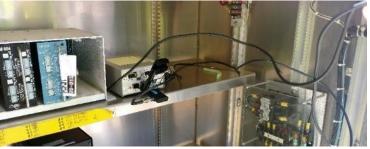
Measuring Progress on Border Delays

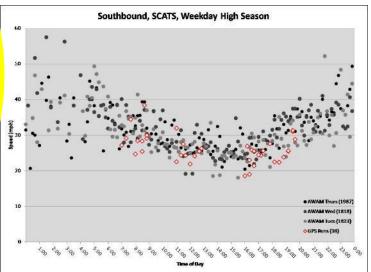
Border Delay Facts, ITS at the Border & Moving Forward

About Crossborder Group

- Founded in 1996 by Kenn Morris
- Key consulting & research staff:
 - San Diego, USA
 - Tijuana, Mexico
 - Phoenix, USA*
- Specialists in Mexico & North American border market research, data collection, surveys, and strategies – for business, transportation, and site selection

Our Focus:


- US-Mexico & US-Canada border markets
- Transportation & freight planning
- Site selection, cost & feasibility studies
- Crossborder strategies & market entry
- Maquiladora & NorthAm industrial research
- Crossborder retail & tourism research

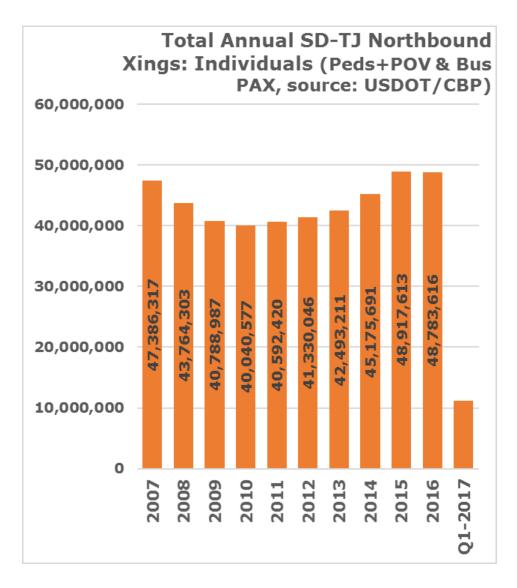


ITS: Intelligent Transportation System

Applied IT & telecom tech to improve traffic and transportation management/planning

ITS At the Border: How Common?

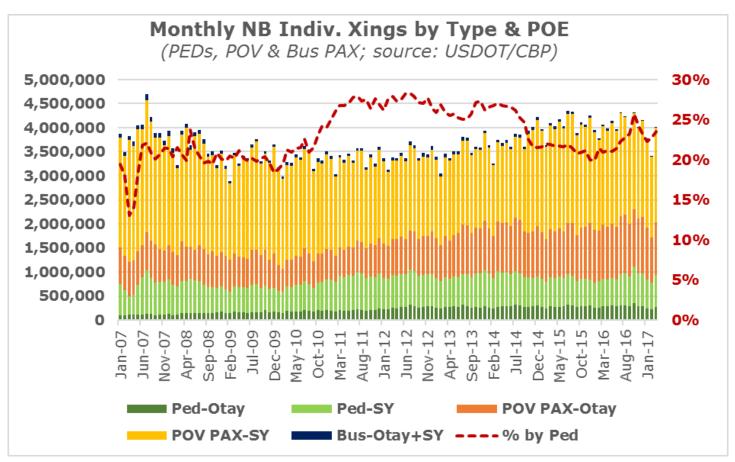
- To-date, Crossborder Group has collected data at 22 Land Ports of Entry (21 US-Mexico, 1 US-Canada)
- Of these, only 3 had ITS systems in place to measure border crossing times for POVs (2 in TX, 1 in WA/BC – BT)
- More had ITS for cargo: RFID 7 currently in TX, 1 in AZ (new)
- So...of 48+ US-Mexico crossings, most do not have ITS in place



Personal Border Crossings & Border Delays:

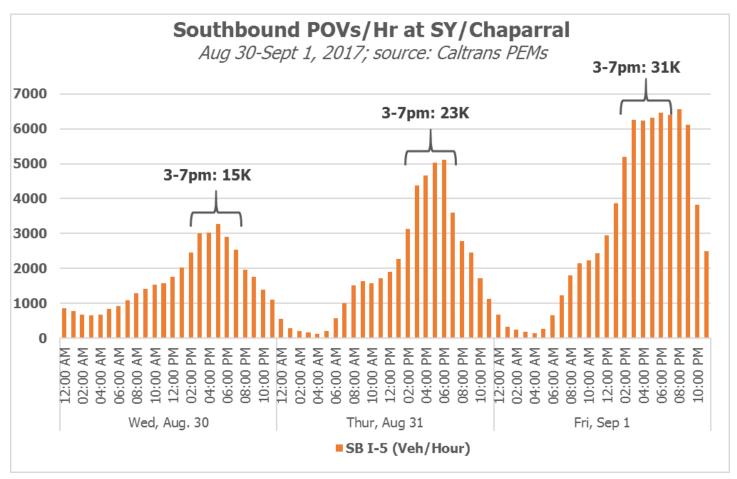
What We Know

Why Delays? SD-TJ Border Crossing Trends (1)



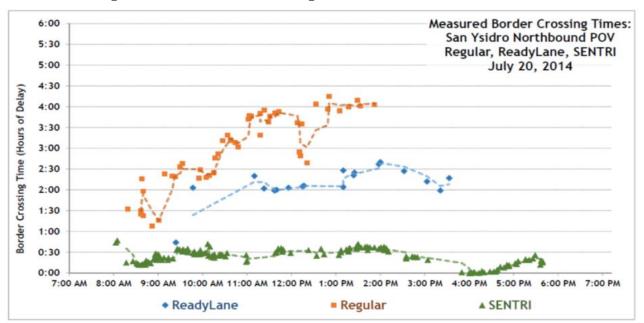
- Peds + Car PAX + Bus PAX = total crossers
- Low-points 2009-2011: 40.5M/yr
- 2015 & 2016: nearly 49M individuals crossed
 - +20% more crossers
- Q1-2017 vs 2016: -5%
- Border xings have been increasing despite 25-30% drop in value of MXN peso...
 - What if peso stronger?

Why Delays? SD-TJ Border Crossing Trends (2)


- Looking at monthly crossings by mode (Ped, Car & Bus PAX), see growth of +700K/mo (approx. 23K/day)
- Also see growing use of Otay Mesa & mode shift (from Ped to Car) following expansion of SYPOE...

Why Delays? Southbound SY/Chaparral

- Few ITS systems in place...but one is PeMS: can help us understand why we see SB delays at SY...
- Data from last week...



So...the Big Question

Question: Are delays improving? Getting better?

Honest Answer: No one "knows" for sure

- Fact: There is no set of verified, accurate, multi-year data
 - CBP probably has best set of longitudinal data, but accuracy varies by POE & queue length
- Fact: Are some "snapshots" of data...seem to show some improvement (2014 v 2016) but not conclusive...

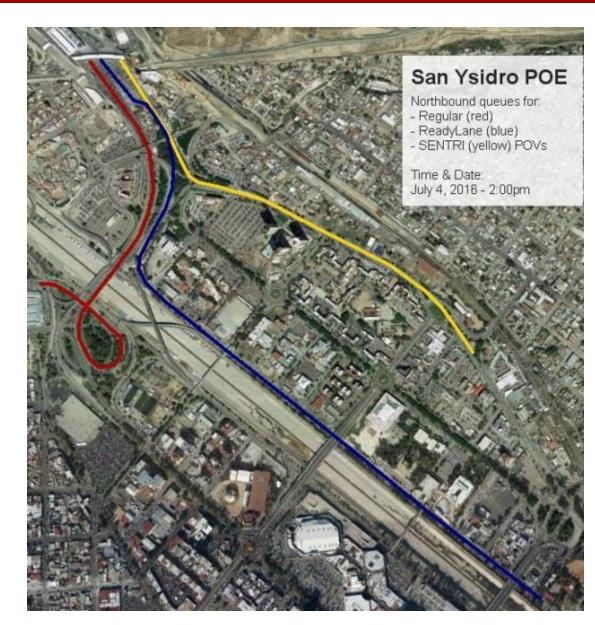
More Facts: Processing (Inspection) Times

	January, 2017					
	General	Ready	DCL			
San Ysidro Throughput	48	65	101			
Process Time (seconds)	71	51	31			

- Jan2017 CBP data (above) shows average processing (inspection) times for SENTRI (31 sec.), ReadyLane (51 sec.) and Regular/General (71 sec.) cars...
- This is consistent with hundreds of samples we've taken during 2014-2016 at San Ysidro & Otay Mesa...

		0:00:05	0.00.10	0.00.15	0.00.27	0.00.18	0.01.00	0.00.15	0:00:25	0.00.12		
SENTRI 1	Sample 1 (Processing time for 1 Car)								0:00:30			0:00:22
		0:00:08	0:00:23	0:00:21	0:00:40	0:00:09	0:00:14	0:00:18	0:00:18	0:00:13	0:00:09	
		0:00:18	0:00:08	0:00:20	0:00:51	0:00:12	0:00:19	0:00:17	0:00:12	0:00:15	0:00:14	
SENTRI 2 (Pro	Sample 2 (Processing time for 1 Car)	0:00:10	0:00:08	0:00:12	0:00:25	0:00:18	0:00:50	0:00:13	0:01:20	0:02:20		
		0:00:21	0:00:27	0:00:25	0:00:26	0:00:10	0:00:15	0:00:19	0:00:30	0:00:28	0:00:12	
		0:00:12	0:00:15	0:00:19	0:00:19	0:00:12	0:00:19	0:00:17	0:00:13	0:00:09	0:00:10	
		0:00:20	0:00:13	0:00:19	0:00:13	0:00:15	0:00:19	0:00:14	0:00:51	0:00:21	0:00:15	
	Ready Lane (Processing time for 1 Car)	0:01:18	0:00:42	0:01:23	0:01:23	0:01:31	0:01:37	0:00:40	0:04:40	0:02:35		0:00:57
		0:00:37	0:00:53	0:00:30	0:00:51	0:00:32	0:01:57	0:00:29	0:01:02	0:00:27	0:01:31	
		0:00:44	0:00:42	0:01:15	0:00:42	0:00:30	0:00:32	0:00:38	0:00:20	0:00:37	0:00:39	
		0:01:04	0:00:14	0:00:37	0:00:18	0:00:31	0:00:22	0:00:49	0:00:11	0:00:29	0:00:30	
	Sample 1 (Processing time for 1 Car)	0:01:01	0:02:31	0:01:14	0:00:56	0:01:27	0:02:27	0:00:59	0:01:51	0:02:45	0:01:13	0:01:32
		0:01:54	0:01:30	0:01:59	0:00:29	0:00:33	0:01:37	0:01:01	0:01:11	0:01:06	0:01:46	
		0:02:11	0:01:37	0:01:26	0:02:16	0:02:16	0:01:43	0:01:51	0:01:33	0:01:57	0:00:42	
		0:01:42	0:01:03	0:00:42	0:01:13	0:01:58	0:00:45	0:01:44	0:00:59	0:00:21	0:00:50	
Regular 2	Sample 2 (Processing time for 1 Car)	0:02:00	0:00:52	0:01:55	0:01:45	0:01:20	0:01:38	0:03:10	0:01:38	0:01:34	0:02:37	
		0:01:20	0:01:33	0:01:13	0:01:23	0:01:04	0:01:02	0:03:07	0:01:15	0:00:38	0:01:07	
		0:02:46	0:03:23	0:00:41	0:01:56	0:00:47	0:01:07	0:02:51	0:01:31	0:00:47	0:00:44	
		0:01:20	0:00:59	0:01:00	0:02:06	0:01:25	0:00:42	0:01:06	0:01:07	0:00:51	0:01:30	

ITS at the Border: What Kind Works?



ITS At the Border: The Challenge of Measuring Delays

- It's complicated:

 Have to address two
 sides of a border,
 sharing of data, many
 lane types, security of equipment, etc...
- Peak queues can be very, VERY long... (see example at right), for commercial, POVs and pedestrians
- What tech to use? No single tech solution covers all needs & field conditions

Methods - From Low Tech to High Tech (1)

Manual recording of license plates for travel time data

- Data from two points: end of queue, end of delay...
- Very flexible, but labor intensive, costly & security issues, match rates 5-30%

License Plate

4BB3502 - 94.54% California - 99%

Vehicle Color

white - 39.37%

Vehicle Make

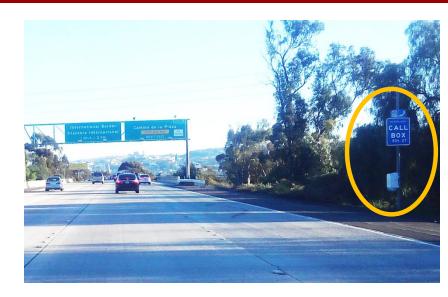
ford - 15.82%

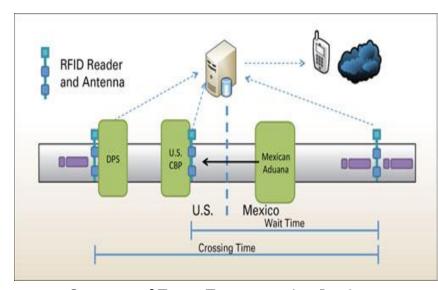
Total Processing Tir

3.618 s

LPRs – license plate readers

- Used extensively by CBP & Aduanas
- Excellent read rates (90%+)
- Limits: fixed collection points, queues may be beyond sites, lighting/imaging can be issue, can be costly (but decreasing)


Methods - From Low Tech to High Tech (2)


Bluetooth & Wifi sensors

- Remote sensing of BT or Wifi signals becoming common; little public interaction, is anonymous
- Modest level of samples; Limits: has fixed collection points, poss. data delay between points

RFID

- Similar tech as SENTRI/WHTI, but used to measure delays at 7 cargo POEs along US-MX border; excellent read rates
- Limits: best for "small" pool of frequent crossers; Limits: fixed collection points, poss. data delay between points

Courtesy of Texas Transportation Institute

Methods - From Low Tech to High Tech (5)

GPS, apps or cell phone data

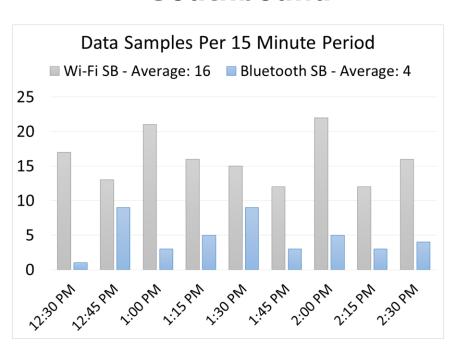
- Uses probe vehicles (equipment or app recruitment needed), or anon.
 GPS data from cell phone providers
- Highly accurate (can be real time); requires little infrastructure investment, positions not fixed; Limits: Recruitment can be tough & may be costly

Facial recognition

- For car & pedestrians; has not yet been implemented for travel time measures – but increasing interest from airports
- Similar limitations as LPRs (fixed point, likely higher target for vandalism)

Photo courtesy of San Diego Union Tribune

So, Which ITS To Use?

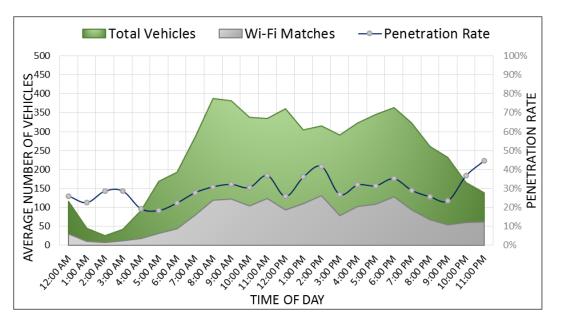

- GPS-based apps might be ideal but recruitment is big barrier
- Non-intrusive sensing of WiFi or BT is probably most likely option

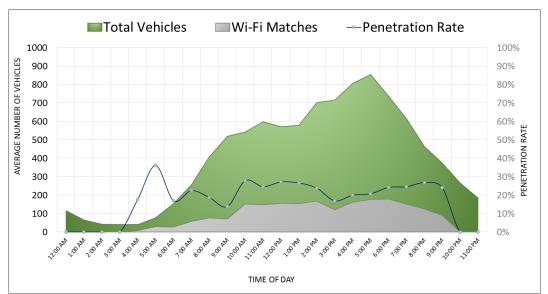
 but which?
- 2015 ADOT Border Study: Side-by-side sensors found WiFi signals much more prevalent than BT...

Northbound

Data Samples Per 15 Minute Period Wi-Fi NB - Average: 24 Bluetooth NB - Average: 4 40 35 30 25 20 15 10 5 0 72:30 PM 72:45 PM 72:00 PM 72:50 P

Southbound

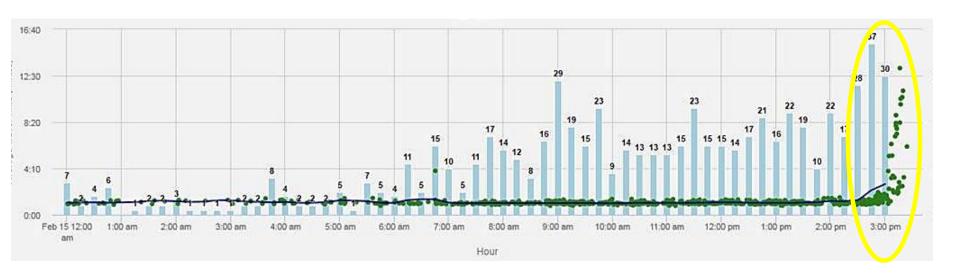

WiFi Penetration Rate Examples - ADOT (2015)


DeConcini POE (Nogales)

Northbound WiFi Penetration Rate: 30.6%

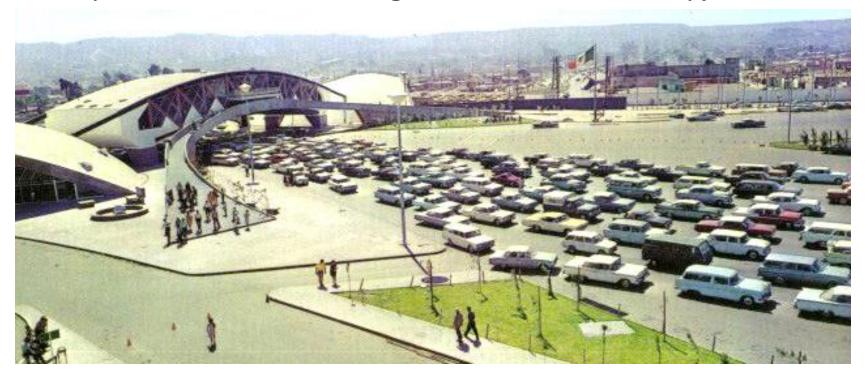
San Luis POE

Southbound WiFi Penetration Rate: 21.0%



San Ysidro POE & Wifi Detection

- SANDAG & Caltrans have been leading much of effort to create ITS; esp. needed for Otay Mesa East
- Have implemented Wifi sensors for POV detection at SB San Ysidro (possible ADOT project influence?)
- Seems to be working...shows afternoon delays as expected...



Sample of crossing time and detection data

Moving Forward...

- Have to accept we can't look in past for historic BWT data
- Need to explore mechanisms to both invest in new ITS infrastructure at POEs (NB & SB, large & small)
- Need to improve sharing of what data exists (similar to Cascade Gateway Border Data Warehouse by International Mobility & Trade Corridor Program/Whatcom County)

iGracias!

¿Preguntas?

Kenn@CrossborderBusiness.com

